Monitoring and Mapping Winter Wheat Spring Frost Damage with MODIS Data and Statistical Data

Author:

Chen Di12ORCID,Liu Buchun12,Lei Tianjie12,Yang Xiaojuan12ORCID,Liu Yuan12,Bai Wei12,Han Rui12,Bai Huiqing12,Chang Naijie3ORCID

Affiliation:

1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. National Engineering Laboratory of Efficient Crop Water Use and Disaster Reduction, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Spring frost is an extreme temperature event that poses a significant threat to winter wheat production and consequently jeopardizes food security. In the context of climate change, the accelerated phenology of winter wheat due to global warming advances the frost-sensitive stage, thereby escalating the risk of spring frost damage. Present techniques for monitoring and assessing frost damage heavily rely on meteorological data, controlled field experiments and crop model simulations, which cannot accurately depict the actual disaster situation for winter wheat. In this study, we propose a novel method that utilizes remote sensing index and statistical data to ascertain the spatial distribution of spring frost damage to winter wheat and evaluate the extent of damage. This method was employed to monitor and assess the spring frost damage event that occurred in Shandong province from 3 to 7 April 2018. The result shows that beginning on 3 April, the daily minimum temperature in western Shandong Province dropped significantly (decreased by 17.93 °C), accompanied by precipitation. The daily minimum temperature reached the lowest on 7 April (−1.48 °C). The growth of winter wheat began to be inhibited on 3 April 2018, and this process persisted until 13 April. Subsequently, the impact of spring frost damage on winter wheat ceased and growth gradually resumed. The affected area of winter wheat spanned 545,000 mu with an accuracy rate of 89.72%. Severely afflicted areas are mainly located in the cities of Jining, Zaozhuang, Dezhou, Heze, Liaocheng, Jinan and Tai’an in western Shandong province, and the yield reduction rates were 5.27~12.02%. Our monitoring results were consistent with the distribution of county-level winter wheat yield in 2018 in Shandong province, the daily minimum temperature distribution during spring frost and severely afflicted areas reported by the news. This method proves effective in delineating the spatial distribution of agricultural disasters and monitoring the extent of disaster damage. Furthermore, it can provide reliable information of disaster area and geospatial location for the agricultural department, thereby aiding in disaster damage assessment and post-disaster replanting.

Funder

Central Public-interest Scientific Institution Basal Research Fund

Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

Government Procurement of services

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3