Estimation of groundwater recharge using multiple climate models in Bayesian frameworks

Author:

Achieng Kevin O.123ORCID,Zhu Jianting4

Affiliation:

1. Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA

2. Department of Civil Engineering, Dedan Kimathi University of Technology, Private Bag 10143, Nyeri, Kenya

3. Water Resource Management Center, Dedan Kimathi University of Technology, Nyeri, Kenya

4. Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA

Abstract

Abstract Groundwater recharge plays a vital role in replenishing aquifers, sustaining demand, and reducing adverse effects (e.g. land subsidence). In order to manage climate change-induced effects on groundwater dynamics, climate models are increasingly being used to predict current and future recharges. Even though there has been a number of hydrological studies that have averaged climate models’ predictions in a Bayesian framework, few studies have been related to the groundwater recharge. In this study, groundwater recharge estimates from 10 regional climate models (RCMs) are averaged in 12 different Bayesian frameworks with variations of priors. A recession-curve-displacement method was used to compute recharge from measured streamflow data. Two basins of different sizes located in the same water resource region in the USA, the Cedar River Basin and the Rainy River Basin, are selected to illustrate the approach and conduct quantitative analysis. It has been shown that groundwater recharge prediction is affected by the Bayesian priors. The non-Empirical Bayes g-Local-based Bayesian priors result in posterior inclusion probability values that are consistent with the performance of the climate models outside the Bayesian framework. With the proper choice of priors, the Bayesian frameworks can produce good results of groundwater recharge with R2, percent bias error, and Willmott's index of agreement of >0.97, <2%, and >0.97, respectively, in the two basins. The Bayesian framework with an appropriate prior provides opportunity to estimate recharge from multiple climate models.

Funder

Bishop, Floyd & Wilma Endowment and Paul A. Rechard Fellowship at the University of Wyoming

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3