Sustainability of an Open-Loop GWHP System in an Italian Alpine Valley

Author:

Cappellari DavideORCID,Piccinini LeonardoORCID,Pontin AlessandroORCID,Fabbri PaoloORCID

Abstract

Shallow geothermal systems (SGSs) for building climatization represent an advantageous alternative to traditional air-conditioning systems, resulting in economic and environmental benefits. Installation of these systems requires knowledge of site-specific geological and hydrogeological conditions, which in feasibility studies are often evaluated only at the single plant scale, lacking a comprehensive view and risking not to guarantee the system sustainability over time. In this paper a methodology for the sustainable design of SGSs is presented. The methodology is developed from an example on the aquifer scale in Longarone (Belluno, Italy), where three groundwater heat pumps (GWHPs) were installed in an industrial area located in a mountain basin hosting a coarse-grained phreatic aquifer, characterized by sediments with high hydraulic conductivity and proximal to a large river (Piave River). Open-loop systems were first analyzed through numerical modeling using FEFLOW software, identifying peculiar features of the aquifer, due to its interaction with surface waters, and suggesting the possibility of its greater geothermal exploitation. Subsequently, a relationship between flow rates and thermal plume extensions was obtained, which is useful to providing support in the evaluation of potential interference with neighboring systems. The study at the aquifer scale proved representative of the system, highlighting the criticalities of the area, such as trends of aquifer temperature alteration, interference between plants, and thermal feedback.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3