Modeling water and salinity risks to viticulture under prolonged sustained deficit and saline water irrigation

Author:

Phogat V.12,Cox J. W.13,Šimůnek J.4,Hayman P.1

Affiliation:

1. South Australian Research and Development Institute, GPO. Box 397, Adelaide, SA 5001, Australia

2. CCS Haryana Agricultural University, Hisar 125 004, India

3. The University of Adelaide, PMB1 Glen, Osmond, SA 5064, Australia

4. Department of Environmental Sciences, University of California, Riverside, CA 92521, United States

Abstract

Abstract A numerical model (HYDRUS-1D) was used to evaluate the impacts of the long-term (2004–2015) use of sustained deficit irrigation (10% (D10%) and 20% (D20%) less than full), irrigations with increased water salinity (ECiw of 0.5 and 0.8 dS/m), 50% deficit irrigation during a drought period (DD50%), and DD50% coupled with an increased salinity of water (ECiw of 0.5 and 0.8 dS/m) on the water balance and salinity dynamics under grapevine in two soils at two locations with different climatic conditions. The results showed that D20% and DD50% significantly reduced water uptake and seasonal drainage (Dr) by the vines as compared to full irrigation. Vineyards established in light-textured soils showed two to five times larger drainage losses as compared to heavy-textured soils. The results revealed that the slight increase in the electrical conductivity of irrigation water (ECiw = 0.5 and 0.8 dS/m) increased the risks in terms of the amount of salts deposited in the soil and transport of large quantities of irrigation-induced salts beyond the root zone. Hence, it is imperative to monitor all of the important water, soil, and salinity drivers of agro-hydro-geological systems to understand the hydro-salinity dynamics and to ensure the long-term sustainability of irrigated viticulture.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3