Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran

Author:

Seifi Akram1,Riahi Hossien1

Affiliation:

1. Department of Water Engineering, Vali-e-Asr University, Rafsanjan, Iran

Abstract

Abstract In this study, a hybrid model of least square support vector machine-gamma test (LSSVM-GT) is proposed for estimating daily ETo under arid conditions of Zahedan station, Iran. Gamma test was used for selecting the best input vectors for models. The estimated ETo by LSSVM-GT model with different kernels of RBF, linear and polynomial, were compared with other hybrid approaches including ANN-GT, ANFIS-GT, and empirical equations. The gamma test revealed that climate variables of minimum and maximum air temperature and wind speed are the most important parameters. The LSSVM model performed better than the ANFIS and ANN models when similar meteorological input variables are used. Also, the performance of the three models of LSSVM, ANFIS, and ANN were better than the empirical equations such as Blaney–Criddle and Hargreaves–Samani. The RMSE, MAE, and R2 for the best input vector by LSSVM were 0.1 mm day−1, 0.13 mm day−1, and 0.99, respectively. The threshold of relative absolute error of 95% predicted values by LSSVM, ANN, and ANFIS models were about 8.4%, 9.4%, and 24%, respectively. Based on the comparison of the overall performances, the developed LSSVM-GT approach is greatly capable of providing favorable predictions with high precision in arid regions of Iran.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference71 articles.

1. Assessing integrity of weather data for reference evapotranspiration estimation;Journal of Irrigation and Drainage Engineering,1996

2. FAO 56: crop evapotranspiration (guidelines for computing crop water requirements);FAO Irrigation and Drainage Paper,1998

3. Generalization performance of support vector machines and neural networks in runoff modeling;Expert Systems with Applications,2009

4. Identification of support vector machines for runoff modelling;Journal of Hydroinformatics,2004

5. A two-step-ahead recurrent neural network for stream-flow forecasting;Hydrological Processes,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3