Affiliation:
1. Department of Water Engineering, Vali-e-Asr University, Rafsanjan, Iran
Abstract
Abstract
In this study, a hybrid model of least square support vector machine-gamma test (LSSVM-GT) is proposed for estimating daily ETo under arid conditions of Zahedan station, Iran. Gamma test was used for selecting the best input vectors for models. The estimated ETo by LSSVM-GT model with different kernels of RBF, linear and polynomial, were compared with other hybrid approaches including ANN-GT, ANFIS-GT, and empirical equations. The gamma test revealed that climate variables of minimum and maximum air temperature and wind speed are the most important parameters. The LSSVM model performed better than the ANFIS and ANN models when similar meteorological input variables are used. Also, the performance of the three models of LSSVM, ANFIS, and ANN were better than the empirical equations such as Blaney–Criddle and Hargreaves–Samani. The RMSE, MAE, and R2 for the best input vector by LSSVM were 0.1 mm day−1, 0.13 mm day−1, and 0.99, respectively. The threshold of relative absolute error of 95% predicted values by LSSVM, ANN, and ANFIS models were about 8.4%, 9.4%, and 24%, respectively. Based on the comparison of the overall performances, the developed LSSVM-GT approach is greatly capable of providing favorable predictions with high precision in arid regions of Iran.
Subject
Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献