Quantifying the contribution of uncertainty sources of artificial neural network models using ANOVA for reservoir power generation

Author:

Jiang Wenhang12,Liu Jiufu1,Peng Anbang1,Liu Guodong2,Zhang Rong1ORCID

Affiliation:

1. a State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China

2. b State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China

Abstract

Abstract There are many sources of uncertainty in reservoir operation. The presence of these uncertainties might lead to operation risks, which directly affect the comprehensive benefit of reservoirs. This study developed a simple framework to quantify the uncertainty contribution arising from the inputs, model structures, model parameters, and their interaction in the reservoirs. We established a deterministic reservoir operations model with the intention of maximizing power generation, and the scheduling results with the inputs and optimal output datasets were used for data-driven models – artificial neural networks (ANNs). The time period, inflow, storage, and inflow in the last period were chosen as input, integrating with ANN models of different structures and parameters, to produce an ensemble of 10-day forecasts of power generation. The analysis of variance (ANOVA) method was applied to quantify the contribution of the uncertainty sources. The results demonstrated that the inputs were the predominating source of uncertainty in the reservoir operation, especially from May to October. In addition, the uncertainty caused by the interactions between the three sources of uncertainty was more considerable than that of the model structure or parameter in November–April, and the uncertainty contributions of the model structure or parameter were relatively marginal.

Funder

Ministry of Water Resources

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3