Affiliation:
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Hubei Provincial Collaborative Innovative Center for Water Resources Security, Wuhan University, Wuhan 430072, China
Abstract
Abstract
Quantifying forecast uncertainty is of great importance for reservoir operation and flood control. However, deterministic hydrological forecasts do not consider forecast uncertainty. This study develops a conditional probability model based on copulas to quantify forecast uncertainty. Three updating models, namely auto-regressive (AR) model, AR exogenous input model, and adaptive neuro fuzzy inference system model, are applied to update raw deterministic inflow forecasts of the Three Gorges Reservoir on the Yangtze River, China with lead times of 1d, 2d, and 3d. Results show that the conditional probability model provides a reasonable and reliable forecast interval. The updating models both enhance the forecast accuracy and improve the reliability of probabilistic forecasts. The conditional probability model based on copula functions is a useful tool to describe and quantify forecast uncertainty, and using an updating model is an effective measure to improve the accuracy and reliability of probabilistic forecast.
Funder
National Key R&D plan of China
National Natural Science Foundation of China
Subject
Water Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献