Green infrastructure and climate change impacts on the flows and water quality of urban catchments: Salmons Brook and Pymmes Brook in north-east London

Author:

Bussi Gianbattista1,Whitehead Paul G.12,Nelson Rosie3,Bryden John3,Jackson Christopher R.4,Hughes Andrew G.4,Butler Adrian P.5,Landström Catharina2,Peters Helge2,Dadson Simon26,Russell Ian7

Affiliation:

1. Water Resource Associates, Wallingford OX10 3XA, UK

2. School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK

3. Thames21, The City of London, Guildhall, Aldermanbury Street, London EC2 V 7HH, UK

4. British Geological Survey, Keyworth, Nottingham NG12 5GG, UK

5. Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

6. UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK

7. London Borough of Enfield, Civic Centre Silver Street, London EN1 3XA, UK

Abstract

Abstract Poor water quality is a widespread issue in urban rivers and streams in London. Localised pollution can have impacts on local communities, from health issues to environmental degradation and restricted recreational use of water. The Salmons and Pymmes Brooks, located in the London Borough of Enfield, flow into the River Lee, and in this paper, the impacts of misconnected sewers, urban runoff and atmospheric pollution have been evaluated. The first step towards finding a sustainable and effective solution to these issues is to identify sources and paths of pollutants and to understand their cycle through catchments and rivers. The INCA water quality model has been applied to the Salmons and Pymmes urban catchments in north-east London, with the aim of providing local communities and community action groups such as Thames21 with a tool they can use to assess the water quality issue. INCA is a process-based, dynamic flow and quality model, and so it can account for daily changes in temperature, flow, water velocity and residence time that all affect reaction kinetics and hence chemical flux. As INCA is process-based, a set of mitigation strategies have been evaluated including constructed wetland across the catchment to assess pollution control. The constructed wetlands can make a significant difference reducing sediment transport and improving nutrient control for nitrogen and phosphorus. The results of this paper show that a substantial reduction in nitrate, ammonium and phosphorus concentrations can be achieved if a proper catchment-scale wetland implementation strategy is put in place. Furthermore, the paper shows how the nutrient reduction efficiency of the wetlands should not be affected by climate change.

Funder

Natural Environment Research Council

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3