Impact of rainfall variability and land-use changes on river discharge in Sanaga catchment (forest–savannah transition zone in Central Africa)

Author:

Ebodé Valentin Brice1ORCID

Affiliation:

1. Department of Geography, University of Yaounde 1, P.O. Box 755, Yaounde, Cameroon

Abstract

Abstract Climate change/variability and land-use changes are the main forcings of river discharges variability. However, an understanding of their simultaneous impacts on river discharges remains limited in some parts of the world like in Central Africa. To shed light on this issue, the objective of this article was to investigate the effects of rainfall variability and land-use changes on river discharges in the Sanaga watershed (at Song Mbengue and Nachtigal gauging stations) and some of its sub-watersheds (Mbakaou, Lom Pangar, Magba and Bamendjing) over the 5 or 7 recent decades (depending on the data availability). To achieve this goal, hydrometeorological data of the Sanaga watershed and sub-watersheds were analyzed using the Pettitt and Mann-Kendall tests. Likewise, land-use changes in the watershed and sub-watersheds were also analyzed using supervised classifications of Landsat satellite images of the watersheds at two periods (1984 and 2020). The results show that annual rainfall decreased throughout the Sanaga watershed. This decrease is only statistically significant for the Sanaga watershed at Nachtigal (−5%), for which the study focused on relatively longer hydropluviometric series, including the 1950 and 1960s (wet decades). However, although the rainfall decreased in this watershed, the flows increased insignificantly according to the tests used in most cases. The 2010s seems particularly concerned by this increase, including in the Sanaga watershed at Nachtigal, where the general trend is downward. The flows increase in the Sanaga watershed would be the consequence of the increase in impervious areas in the latter (between +181.3 and +1,300% for built and roads and between +4.1 and +11.9% for bare soils), which would compensate for the drop in precipitation by increasing runoff. These results could be used for long-term planning of water demand and use in this watershed, as well as for improving future simulations of flows.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3