Improving the ZnO-photocatalytic degradation of humic acid using powdered residuals from water purification plant

Author:

Elmougi Mohamed1,El-Etriby Hisham1,Barakat Ragab1,Alalm Mohamed Gar12,Mossad Mohamed1

Affiliation:

1. Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

2. Department of Chemical Engineering, Polytechnique Montreal, C.P. 6079, Montreal H3C 3A7, Quebec, Canada

Abstract

Abstract Alum residuals were collected from a water treatment plant and used for improving the photocatalytic degradation of humic acid (HA) by combinations of zinc oxide (ZnO) and powdered residuals from a water purification plant (PRWPP). The influence of operating conditions such as initial humic acid concentration, pH, irradiation time, PRWPP to ZnO ratio, catalyst dose, and light illuminance have been investigated. The optimum PRWPP to ZnO ratio was 10:90. Using the prepared composites instead of bare ZnO raised the HA removal efficiency from 85.5% to 97.8%, and from 38% to 48.1% at catalyst doses of 1.2 g/l and 0.4 g/l, respectively. Moreover, it reduced energy consumption from 210.4 to 166.2 Wh per mg of HA. An artificial neural network model (ANN) was developed to predict the removal efficiency under different operating conditions. The optimum ANN structure yielded a coefficient of determination (R2 = 0.993). A modified Langmuir-Hinshelwood pseudo-first-order model was used for describing the degradation kinetics at different initial concentrations of HA.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3