A systematic review of photocatalytic degradation of humic acid in aqueous solution using nanoparticles

Author:

Derakhshani Elham1,Naghizadeh Ali1,Arab-Zozani Morteza2,Farkhondeh Tahereh1

Affiliation:

1. Medical Toxicology and Drug Abuse Research Center (MTDRC) , Birjand University of Medical Sciences (BUMS) , Birjand , Iran

2. Social Determinants of Health Research Center , Birjand University of Medical Sciences (BUMS) , Birjand , Iran

Abstract

Abstract Objectives Humic acid (HA) compounds in the disinfection processes of drinking water and wastewater are considered as precursors of highly toxic, carcinogenic and mutagenic disinfectant by-products. The aim of this study was to systematically review all research studies on the photocatalytic degradation of humic acid and to evaluate the laboratory conditions and results of these studies. Content The present systematic review was performed by searching the Scopus, PubMed, and web of science databases until December 2021. The parameters of type of catalyst, catalyst size, optimum pH, optimum initial concentration of humic Acid, optimum catalyst concentration, optimum time, light used and removal efficiency were investigated. Summary 395 studies were screened and using the inclusion and exclusion criteria, in total, 20 studies met our inclusion criteria and provided the information necessary to Photocatalytic degradation of humic acid by nanoparticles. In the investigated studies, the percentage of photocatalytic degradation of humic acid by nanoparticles was reported to be above 70%, and in some studies, the removal efficiency had reached 100%. Outlook From the results of this systematic review, it was concluded that the photocatalytic process using nanoparticles has a high effect on the degradation of humic acid.

Funder

Birjand University of Medical Sciences

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Pollution,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3