Modelling climatic trends for the Zambezi and Orange River Basins: implications on water security

Author:

Chisanga Charles B.1ORCID,Mubanga Kabwe H.2ORCID,Sichigabula Henry2ORCID,Banda Kawawa3ORCID,Muchanga Manoah2,Ncube Lindani4ORCID,van Niekerk Helena Johanna4,Zhao Baojin4ORCID,Mkonde Akhona Amanda4,Rasmeni Sonwabile Kidwell4

Affiliation:

1. Department of Plant and Environmental Sciences, Copperbelt University, Box 21692, Off Jambo Drive, Kitwe 10101, Zambia

2. Department of Geography and Environmental Studies, University of Zambia, Lusaka, Zambia

3. Integrated Water Resources Management Centre, C/O Department of Geology, University of Zambia, Lusaka, Zambia

4. Department of Environmental Sciences, University of South Africa (UNISA), Pretoria, South Africa

Abstract

Abstract Climate change impacts are dependent on changes in air temperature, rainfall (frequency and amount) and climate indices, which are highly certain. Climate extreme indices are important metrics that are used to communicate the impacts of climate change. The CORDEX African-domain RCM (SMHI-RCA4) run by seven CMIP5 (CCCma-CanESM2, IPSL-IPSL-CM5A-MR, MIROC-MIROC5, MPI-M-MPI-ESM-LR, NCC-NorESM1-M, MOHC-HadGEM2-ES and NOAA-GFDL-GFDL-ESM2M) and two representative concentration pathways (RCP4.5 and RCP8.5) were used in this study. The future climate change is analysed relative to 2020–2050/1970–2000 using a multi-model ensemble projection. Selected climate indices were analysed using a multi-model ensemble of CMIP5 GCMs (GFDL-ESM2G, HadGEM2-ES and IPSL-CM5A-MR). The climate data operators (CDOs) were used in merging and manipulating the modelled (RCM) data and ETCCDI climate indices. The Mann–Kendall was used to compute the trends in time-series data at p < 0.05. Results indicate that temperature will increase in the Orange and Zambezi River Basins. Rainfall shows variability in both river basins. The temperature-based indices (tn90pETCCDI, tnnETCCDI, tnxETCCDI, tx90pETCCDI, txnETCCDI and txxETCCDI) were statistically significant with positive linear trends. The dtrETCCDI and wsdiETCCDI were statistically significant with positive linear trends within the Zambezi River Basin. csdiETCCDI and tn10pETCCDI were statistically significant with negative trends in both basins. The change in rainfall, temperature and climate indices will have implications on agricultural production, provisions of various ecosystem services, human health, water resources, hydrology, water security, water quality and quantity. The climate extreme indices can assist in analysing regional and global extremes in meteorological parameters and assist climate, and crop modellers and policymakers in assessing sectoral impacts.

Funder

water research commission

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3