Anthropogenic Geomorphology of the Magoye Riverine Landscape, Zambia

Author:

Mafwabo DanielORCID,Muchanga ManoahORCID,Wankie RichmanORCID,Singubi NordoftORCID,Zulu IanORCID

Abstract

Aims: This study sought to investigate the role of humans in modification and creation of landforms in river channels with specific focus on the Magoye River. The objectives of this study were to: document geomorphic characteristics of Magoye River, assess anthropogenic activities and landuse/cover change in the buffer zone and, examine key anthropogenic river landforms. Study Design: This study was inspired by analytic eclecticism research philosophy and adopted mixed methods, particularly concurrent research design. Methodology: The landcover images were analysed using image processing tools in ArcGIS 10.4 for the periods 1990, 2005 and 2020. Descriptive statistics were used to quantitatively visualize the changes in land cover/use. The data was collected using field observation, photography, GPS and a Likert scale tool and, analysed using descriptive statistics, specifically frequency graphs showing mean and standard deviation. Results: The results showed that sand mining and brick moulding accounted for almost 68% of human activities in the 11.48 km2 delineated buffer zone by 2020, compared to 35% in 1990. These punctuated creation of sand conical heaps, stone bunds, pot holes and pools, shallow wells on the river bed, gullies induced by water accessed points, which weakened river banks. Generally, sand mining and brick moulding were the most severe in the buffer zone and they created wide range of deformations riverbanks and beds. The findings further revealed that Magoye River had geomorphologically evolved into Reservoir River covering 80% on the upstream (139.4km) and Sand Bank River accounting 20% on downstream (27.6 km). Conclusion: The study concludes that, the catchment and buffer zone have undergone degradation propelled by anthropogenic activities, which have punctuated channel morphological degradation. Although the Magoye River channel was highly damaged, it was not beyond regeneration if restoration measures, were collaboratively identified and implemented with the local communities.

Publisher

Sciencedomain International

Subject

Industrial and Manufacturing Engineering,Metals and Alloys,Strategy and Management,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3