Application of the SWAT model to assess climate and land use/cover change impacts on water balance components of the Kabul River Basin, Afghanistan

Author:

Ougahi Jamal Hassan1ORCID,Karim Shahid2,Mahmood Syed Amer3

Affiliation:

1. a Geography & Environmental Science, School of Social Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK

2. b Department of Geography, Government College University, Lahore, Pakistan

3. c Department of Space Science, University of the Punjab, Lahore, Pakistan

Abstract

Abstract Hydrological models play a key role in simulating and assessing climate and land use/cover (LULC) change impacts on hydrology in a watershed. In this study, the impact of climate and LULC change was investigated using the Soil and Water Assessment Tool (SWAT) model. The simulated and observed streamflow showed a good agreement. Both Nash–Sutcliffe Efficiency (NSE) and coefficient of determination (R2) were found to be greater than 0.7 during the calibration (1985–2002) and validation (2003–2012) period. The water balance components were simulated with inputs from downscaled Global Climate Models (GCMs) data (i.e., future scenario (2030–2100) relative to a baseline period (1974–2004)) under RCP4.5 and RCP8.5, and hypothetical generated LULC change scenarios. All GCMs projected an increase in temperature over the Kabul River Basin (KRB), whereas there was a lack of agreement on projected precipitation among GCMs under both emission and future scenarios. Water yield (WYLD) and evapotranspiration (ET) were projected to decrease in the 21st century. Average annual WYLD was projected to increase under the agriculture-dominant scenario, whereas it decreased under forest and grassland-dominant scenarios. These results are valuable for relevant agencies and stakeholders to adopt measures to counter the negative impacts of climate and LULC change on water resources.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3