Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data

Author:

Chowdhary Hemant1,Escobar Luis A.2,Singh Vijay P.3

Affiliation:

1. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA

2. Department of Experimental Statistics, Louisiana State University, Baton Rouge, Louisiana, USA

3. Department of Biological and Agricultural Engineering & Department of Civil & Environmental Engineering, Texas A & M University, College Station, Texas, USA

Abstract

Multivariate flood frequency analysis, involving flood peak flow, volume and duration, has been traditionally accomplished by employing available functional bivariate and multivariate frequency distributions that have a restriction on the marginals to be from the same family of distributions. The copula concept overcomes this restriction by allowing a combination of arbitrarily chosen marginal types. It also provides a wider choice of admissible dependence structure as compared to the conventional approach. The availability of a vast variety of copula types makes the selection of an appropriate copula family for different hydrological applications a non-trivial task. Graphical and analytic goodness-of-fit tests for testing the suitability of copulas are beginning to evolve and are being developed; there is limited experience of their usage at present, especially in the hydrological field. This paper provides a step-wise procedure for copula selection and illustrates its application to bivariate flood frequency analysis, involving flood peak flow and volume data. Several graphical procedures, tail dependence characteristics, and formal goodness-of-fit tests involving a parametric bootstrap-based technique are considered while investigating the relative applicability of six copula families. The Clayton copula has been identified as a valid model for the particular flood peak flow and volume data set considered in the study.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3