A New Statistical Distribution Derived from a Clayton Copula for Modeling Bivariate Processes

Author:

Poonia Neeraj1,Azad Sarita1

Affiliation:

1. a School of Mathematical and Statistical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India

Abstract

Abstract Rainfall and temperature extremes have become more frequent and severe in recent times due to changing climate. Since these catastrophic occurrences directly affect a region’s hydrology, it is imperative to develop models that can project and explain the joint behavior of climate variables. Copula functions have been used relatively successfully to capture multivariate processes. With climate being a multifaceted process, there is interdependence between variables, making copula use desirable since traditional bivariate distributions do not account for the dependent structure. In this study, we introduced a bivariate exponentiated Teissier distribution based on a Clayton copula. For parameter estimation, the maximum likelihood and inference functions for margin approaches are used. A simulation study that considered various sets of parameters is also conducted in order to select the most efficient parameter estimation method. Last, the applicability of the proposed model is demonstrated using real-world data from flood and temperature processes. After fitting, the log-likelihood, Akaike information criteria (AIC), and Bayesian information criteria (BIC) values of the proposed model are −145.00, 300.00, and 311.71 for flood data, respectively, and −128.71, 267.42, and 275.98 for temperature data, respectively. Estimated parameters are for flood data and for temperature data. It is concluded that this model may be effectively used for modeling the hydrological processes for calculating the probabilities of flood and extreme temperature events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference41 articles.

1. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought;AghaKouchak, A.,2014

2. A bivariate Kumaraswamy-exponential distribution with application;Bakouch, H. S.,2019

3. Bivariate return periods and their importance for flood peak and volume estimation;Brunner, M. I.,2016

4. Modeling the spatial dependence of floods using the Fisher copula;Brunner, M. I.,2019

5. Chen, L., and S. Guo, 2019: Copula-based flood frequency analysis. Copulas and Its Application in Hydrology and Water Resources, Springer, 39–71.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3