Contact stabilization process for hospital wastewater treatment: effects of colloidal organic matter

Author:

Maleki Shahrzad1,Momeni Yasaman1,Monajemi Parjang1

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Fasa University, Fasa, Iran

Abstract

Abstract In this study, the treatability of hospital wastewater was investigated using a contact stabilization process on a laboratory scale. A detention time of one hour was selected for sludge settling and separation of treated effluent, and removal efficiency was measured at contact times of 30, 60, and 90 min, and stabilization times of 4.5 and 5.5 h. Based on the different detention times, 6 series of experiments were designed. Results showed that after an initial rapid COD removal in the first 30 min, COD values fluctuate in the time range of 30–90 min. However, in the case where COD values reduce in the second stage, this recovery is negligible; thus, the time of 30 min is considered as the optimal detention time for the contact reactor. Sludge volume index (SVI) values of 119.20 and 109.17 mL/g were obtained for stabilization times of 4.5 and 5.5 h, respectively. Therefore, the longer the stabilization time, the closer the SVI is to 100 mL/g. Moreover, lower settled sludge volume (SSV) value at 5.5 h of stabilization shows better characteristics compared to 4.5 h of stabilization. Furthermore, COD removal efficiency at the optimum contact time is higher when 5.5 h is selected for stabilization.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference29 articles.

1. Performance-based characterization of a contact stabilization process for slaughterhouse wastewater;Journal of Environmental Science and Health, Part A,2003

2. A new sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment;Biochemical Engineering Journal,2018

3. Required ozone doses for removing pharmaceuticals from wastewater effluents;Science of the Total Environment,2013

4. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis;Water Science and Technology,2010

5. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater;Water Science and Technology,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3