Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis

Author:

Beier S.1,Köster S.1,Veltmann K.1,Schröder H.1,Pinnekamp J.1

Affiliation:

1. RWTH Aachen University, Institute of Environmental Engineering (ISA), Mies-van-der-Rohe-Straße 1, 52074 Aachen, Germany E-mail: koester@isa.rwth-aachen.de; veltmann@isa.rwth-aachen.de; schroeder@isa.rwth-aachen.de; pinnekamp@isa.rwth-aachen.de

Abstract

Considerable concern exists regarding the appearance and effects of trace and ultra trace pollutants in the aquatic environment. In this context, it is necessary to identify relevant hot spot wastewater – such as hospital wastewater – and to implement specific wastewater treatment solutions. Membrane bioreactor (MBR) technology seems to be a suitable pre-treatment approach for the subsequent advanced treatment by high pressure membrane systems such as nanofiltration (NF) and reverse osmosis (RO). This paper is based upon investigations on the first full scale MBR for separate treatment of hospital wastewater in Germany. In this study an NF as well as an RO module for further treatment of the MBR filtrate were tested. The removal efficiencies were assessed using the following target compounds: bezafibrate, bisoprolol, carbamazepine, clarithromycin, ciprofloxacin, diclofenac, ibuprofen, metronidazole, moxifloxacin, telmisartan and tramadol. In summary, the results of this study confirmed that MBR technology followed by an advanced treatment for trace pollutant removal is an adequate approach for specific treatment of hot spot wastewater such as hospital wastewater. In particular, it was shown that – comparing the tested NF and RO – only (a two stage) RO is appropriate to remove pharmaceutical residues from hospital wastewater entirely. The recommended yield of the 2-stage RO is 70% which results in a retentate sidestream of 9%. Our investigations proved that RO is a very efficient treatment approach for elimination of trace pollutants.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3