Optimizing the dynamic response of pressure reducing valves to transients in water networks

Author:

Zaki Khaled12,Imam Yehya13,El-Ansary Amgad1

Affiliation:

1. Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University, Giza, Egypt

2. Wet Utilities Engineer, Resources and Environment Department, Dar Group, Giza, Egypt

3. Environmental Engineering Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt

Abstract

Abstract Pressure reducing valves (PRVs) are typically used to regulate excessive pressure in water distribution networks. During transient events, the dynamic response of PRVs may adversely affect pressure fluctuations in distribution networks. In this study, the dynamic response of PRVs was analyzed by developing a numerical model that coupled an existing water-hammer model and a two-parameter dynamic PRV model. PRV parameters were calibrated, and the model was validated using previous experimental observations. The model was then used to study the effect of PRV dynamics during transient events in a distribution network. To optimize the rate of PRV opening and closure and control its dynamic response, the model was interfaced with an optimization algorithm based on shuffled complex evolution. The applied objective function gave PRV parameters that accelerated damping of the transient pressure waves and minimized the root-mean-square deviation from post-transient steady pressure at all nodes in the network. The results of this study indicate the importance of accounting for PRV response when simulating transients in water distribution networks. This study also highlights the need for PRV manufacturers to include in their product catalogs dynamic PRV parameters for use in transient analysis.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3