A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project

Author:

Liu Xiaolian12,Liu Zirong3,Hou Xiaopeng1,Tian Yu4,Wang Xueni1,Zhang Leike1,Wang Hao4

Affiliation:

1. a College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. b School of Civil Engineering, Tianjin University, Tianjin 300350, China

3. c School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China

4. d State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

ABSTRACT In a complex pressurized water diversion project (WDP), the combined optimal operation of multiple hydraulic facilities is computationally expensive owing to the requirement of massive mathematical simulation model runs. A parallel multi-objective optimization based on adaptive surrogate model (PMO-ASMO) was proposed in this study to alleviate the computational burden while maintaining its effectiveness. At the simulation level, an adaptive surrogate model was established, while a parallel non-dominated sorting genetic algorithm II (PNSGA-II) was utilized at the optimization level. Taking the successive shutdown of pumps as the operating process, the PMO-ASMO was applied to a complex pressurized diversion section of the Jiaodong WDP in China, and the results were compared with those obtained by NSGA-II and PNSGA-II. The results showed that the time consumption of PMO-ASMO was only 9.97% of that acquired by NSGA-II, which was comparable to that of PNSGA-II, in the case of 10-core parallelism. Moreover, compared with PNSGA-II, PMO-ASMO could find the optimal and stable Pareto front with the same number of simulation model runs, or even fewer runs. These results validated the effectiveness and efficiency of the PMO-ASMO. Therefore, the proposed framework based on multi-objective optimization is efficient for combined optimal operation of multiple hydraulic facilities.

Funder

Basic Research Programs of Shanxi Province

National Key R&D Program of China

Open Research Fund of Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3