Evolution properties between meteorological, agricultural and hydrological droughts and their related driving factors in the Luanhe River basin, China

Author:

Chen Xu1,Li Fa-wen1,Wang Yi-xuan1,Feng Ping1,Yang Rui-zhe2

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No.92, Weijin Road, Nankai District, Tianjin 300072, China

2. Agricultural Resources and Environment, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Abstract To fully reveal drought propagation mechanism and effectively mitigate drought, it is of importance to synthesize investigating different types of droughts; specifically, the propagation from meteorological to agricultural droughts and from agricultural to hydrological droughts, as well as their potential driving factors. The results suggested that: (1) the Standardized Precipitation Evapotranspiration Index (SPEI) is a better indicator for detecting drought onset, the Standardized Soil Index (SSI) can better describe drought persistence, and the Standardized Runoff Index (SRI) can depict the termination of drought; (2) the propagation time from meteorological to agricultural droughts, as well as that from agricultural to hydrological droughts, showed remarkable seasonal characteristics in the Luanhe River basin; (3) the significant influence of the Niño 1 + 2 + 3 + 4, Niño 3.4, Southern Oscillation Index (SOI), Multivariate ENSO Index (MEI), and Atlantic Multidecadal Oscillation (AOM) on meteorological drought was concentrated in the 16–88-month periods, as well as the decadal scale of 99–164-month periods, the significant influence of Niño 4, Niño 3.4, MEI, and SOI on agricultural drought was concentrated in the 16–99-month periods, as well as the decadal scale of 99–187-month periods, and the significant influence of Niño 4 and AOM on hydrological drought was concentrated in the 16–64-month periods, as well as the decadal scale of 104–177-month periods.

Funder

Natural Science Foundation of China

National Key R & D Program of China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3