Introduction of new datasets of drought indices based on multivariate methods in semi-arid regions

Author:

Chitsaz Nastaran1,Hosseini-Moghari Seyed-Mohammad1

Affiliation:

1. University of Tehran, Tehran, Iran

Abstract

Abstract Drought is a slow and creeping worldwide phenomenon which has adversely affected arid and semi-arid regions of the world. Drought indices like Streamflow Drought Index (SDI) and Standardized Precipitation Index (SPI) offer quantitative methods for combating probable consequences of drought. In this article, the results of the drought indices trend showed that the case study suffers from hydrological drought more than meteorological drought. The correlation analysis between hydrological and meteorological drought was assessed in monthly and seasonal time scales. To this end, some multivariate techniques were used to summarize the SPI and SDI series of all stations into one new dataset. Three assessment criteria involving higher correlation among drought indices, higher eigenvalue in expansion coefficients, and following fluctuation and variation of original data were used to find the best new datasets and the best multivariate method. Results asserted the superiority of singular value decomposition (SVD) over other multivariate methods. EC1 in the SVD method was able to justify about 80% of the variability in drought indices for monthly time scales, as well as summer and spring for seasonal time series, which followed all fluctuations in original datasets. Therefore, the SVD method is recommended for aggregating drought indices.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference54 articles.

1. Regional hydrological drought monitoring using principal components analysis;Journal of Irrigation and Drainage Engineering,2015

2. A data fusion-based drought index;Water Resources Research,2016

3. Specification and prediction of global surface temperature and precipitation from global SST using CCA;Journal of Climate,1996

4. Drought monitoring using the multivariate standardized precipitation index (MSPI);Water Resources Management,2014

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3