Affiliation:
1. a College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Avenue, Lingang New City, Pudong New District, Shanghai 201306, P. R. China
2. b Center for Marine Environmental and Ecological Modelling, Shanghai Maritime University, Shanghai 201306, P. R. China
Abstract
Abstract
Short-term (e.g., hourly) urban water consumption (or demand) prediction is of great significance for the optimal operation of the intelligent water distribution pump stations. In this study, three single models (autoregressive integrated moving average (ARIMA), back-propagation (BP), support vector machine (SVM)) and three hybrid models (ensemble empirical mode decomposition (EEMD)-ARIMA, EEMD-BP and EEMD-SVM) were developed and compared in terms of prediction accuracy and application convenience. 31-day (1 month) hourly flow series from a water distribution division in Shanghai were used for the demonstration case study, among which 30-day data used for model training and 1-day data used for model verification. Finally, the effects of historical data length on the prediction accuracy of three hybrid models were also analyzed, and the optima of the historical data length for three hybrid models were obtained. Results reveal that (1) the mean absolute percentage errors (MAPE) of EEMD-ARIMA, EEMD-BP, EEMD-SVM, ARIMA, BP and SVM are 5.2036, 1.4460, 1.3424, 5.7891, 4.3857 and 3.8470%, respectively. (2) In terms of prediction accuracy and actual practice convenience, EEMD-SVM performs best among the above six models. (3) The EEMD algorithm is effective for improving the prediction accuracy of six models. (4) The optimal historical data length of EEMD-ARIMA, EEMD-BP and EEMD-SVM are 11, 11 and 10 days, respectively.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献