An EEMDLSTM, SVR, and BP decomposition ensemble model for steel future prices forecasting

Author:

Wu Sen1,Wang Wei1ORCID,Song Yanan1,Liu Shuaiqi1

Affiliation:

1. School of Economics and Management University of Science and Technology Beijing Beijing China

Abstract

AbstractThe forecasting of steel futures prices is important for the steel futures market, even for the steel industry. We propose a decomposition ensemble model that incorporates the Ensemble Empirical Mode Decomposition (EEMD), Long Short‐Term Memory (LSTM), Support Vector Regression (SVR), and Back Propagation (BP) neural network to forecast steel futures prices. The forecasting procedures are as follows: (1) The price data are initially decomposed into several relatively independent Intrinsic Mode Functions (IMFs) and a residue using EEMD. (2) The IMFs are then reconstructed as components representing short‐term, medium‐term, and long‐term frequencies via fine‐to‐coarse. (3) LSTM, SVR, and BP neural network are utilized to forecast the short‐term, medium‐term, and long‐term reconstructed components, respectively. (4) The prediction results for each component are simply added to the final prediction results. The accuracy of the proposed model is compared with several benchmark models by experiments and evaluated by some prediction evaluation indexes. The experimental results show that our model outperforms other models in terms of forecast accuracy, confirming its strong predictive capabilities. This study provides some suggestions for investment and decision making by participants in the steel futures market. It may promote the smooth operation of the steel futures market and shed some light on the operation of the steel industry.

Funder

National Natural Science Foundation of China

National Social Science Fund of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3