Investigating the capabilities of evolutionary data-driven techniques using the challenging estimation of soil moisture content

Author:

Elshorbagy Amin1,El-Baroudy Ibrahim1

Affiliation:

1. Department of Civil & Geological Engineering, Centre for Advanced Numerical Simulation (CANSIM), University of Saskatchewan, Saskatoon SK, Canada S7N 5A9

Abstract

Soil moisture has a crucial role in both the global energy and hydrological cycles; it affects different ecosystem processes. Spatial and temporal variability of soil moisture add to its complex behaviour, which undermines the reliability of most current measurement methods. In this paper, two promising evolutionary data-driven techniques, namely (i) Evolutionary Polynomial Regression and (ii) Genetic Programming, are challenged with modelling the soil moisture response to the near surface atmospheric conditions. The utility of the proposed models is demonstrated through the prediction of the soil moisture response of three experimental soil covers, used for the restoration of watersheds that were disturbed by the mining industry. The results showed that the storage effect of the soil moisture response is the major challenging factor; it can be quantified using cumulative inputs better than time-lag inputs, which can be attributed to the effect of the soil layer moisture-holding capacity. This effect increases with the increase in the soil layer thickness. Three different modelling tools are tested to investigate the tool effect in data-driven modelling. Despite the promising results with regard to the prediction accuracy, the study demonstrates the need for adopting multiple data-driven modelling techniques and tools (modelling environments) to obtain reliable predictions.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3