Affiliation:
1. Department of Civil and Environmental Engineering, National University of Singapore, 117576 Singapore, Singapore
Abstract
Abstract
Genetic programming (GP) is a widely used machine learning (ML) algorithm that has been applied in water resources science and engineering since its conception in the early 1990s. However, similar to other ML applications, the GP algorithm is often used as a data fitting tool rather than as a model building instrument. We find this a gross underutilization of the GP capabilities. The most unique and distinct feature of GP that makes it distinctly different from the rest of ML techniques is its capability to produce explicit mathematical relationships between input and output variables. In the context of theory-guided data science (TGDS) which recently emerged as a new paradigm in ML with the main goal of blending the existing body of knowledge with ML techniques to induce physically sound models. Hence, TGDS has evolved into a popular data science paradigm, especially in scientific disciplines including water resources. Following these ideas, in our prior work, we developed two hydrologically informed rainfall-runoff model induction toolkits for lumped modelling and distributed modelling based on GP. In the current work, the two toolkits are applied using a different hydrological model building library. Here, the model building blocks are derived from the Sugawara TANK model template which represents the elements of hydrological knowledge. Results are compared against the traditional GP approach and suggest that GP as a rainfall-runoff model induction toolkit preserves the prediction power of the traditional GP short-term forecasting approach while benefiting to better understand the catchment runoff dynamics through the readily interpretable induced models.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献