Optimization of cascade stilling basins using GA and PSO approaches

Author:

Bakhtyar R.1,Barry D. A.1

Affiliation:

1. Institut des Sciences et Technologies de l'Environnement, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland

Abstract

In high head dams, the kinetic energy at the spillway toe is very high and the tail-water depth available for energy dissipation is relatively small. Cascade stilling basins are energy dissipation systems for high head dams, the design of which is based on a trial-and-error procedure. Although such an approach yields feasible designs in which hydraulic and topographic considerations are met, there may exist many cost-effective designs. Therefore, optimization tools can help find the least construction cost while keeping hydraulic and topographic considerations satisfied. Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) were used to determine the optimal design of cascade stilling basins in terms of the height of falls and length of stilling basins. The approach was evaluated by application to the design of an energy dissipation system for the Tehri Dam on the Bhagirathi River. Comparison of the proposed methods with dynamic programming and an alternative approach not utilizing an optimization tool revealed that GA and PSO lead to significant savings in the construction cost with less computational effort.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3