Affiliation:
1. Department of Civil and Environmental Engineering, National University of Singapore, Block E1-08-24, No. 1 Engineering Drive 2, Singapore 117578
2. Department of Civil and Environmental Engineering, National University of Singapore, Block E1A- 05-09, No. 1 Engineering Drive 2, Singapore 117576
Abstract
Abstract
One of the more perplexing challenges for the hydrologic research community is the need for development of coupled systems involving integration of hydrologic, atmospheric and socio-economic relationships. Given the demand for integrated modelling and availability of enormous data with varying degrees of (un)certainty, there exists growing popularity of data-driven, unified theory catchment scale hydrological modelling frameworks. Recent research focuses on representation of distinct hydrological processes using mathematical model components that vary in a controlled manner, thereby deriving relationships between alternative conceptual model constructs and catchments’ behaviour. With increasing computational power, an evolutionary approach to auto-configuration of conceptual hydrological models is gaining importance. Its successful implementation depends on the choice of evolutionary algorithm, inventory of model components, numerical implementation, rules of operation and fitness functions. In this study, genetic programming is used as an example of evolutionary algorithm that employs modelling decisions inspired by the Superflex framework to automatically induce optimal model configurations for the given catchment dataset. The main objective of this paper is to identify the effects of entropy, hydrological and statistical measures as optimization objectives on the performance of the proposed approach based on two synthetic case studies of varying complexity.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献