Author:
Babovic Vladan,Keijzer Maarten
Abstract
The runoff formation process is believed to be highly non-linear, time varying, spatially distributed, and not easily described by simple models. Considerable time and effort has been directed to model this process, and many hydrologic models have been built specifically for this purpose. All of them, however, require significant amounts of data for their respective calibration and validation. Using physical models raises issues of collecting the appropriate data with sufficient accuracy. In most cases it is difficult to collect all the data necessary for such a model.
By using data driven models such as genetic programming (GP), one can attempt to model runoff on the basis of available hydrometeorological data. This work addresses use of genetic programming for creating rainfall-runoff models on the basis of data alone, as well as in combination with conceptual models (i.e taking advantage of knowledge about the problem domain).
Subject
Water Science and Technology
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献