Enhanced accuracy of rainfall–runoff modeling with wavelet transform

Author:

Chou Chien-ming1

Affiliation:

1. Department of Design for Sustainable Environment, MingDao University, 369 Wen-Hua Road, Peetow, Changhua 52345, Chinese Taiwan

Abstract

Wavelet transform (WT) is typically used to decompose time series data for only one hydrological feature at a time. This study applied WT for simultaneous decomposition of rainfall and runoff time series data. For the calibration data, the decomposed rainfall and runoff time series calibrate the subsystem response function using the least squares (LS) method at each scale. For the validation data, the decomposed rainfall time series are convoluted with the estimated subsystem response function to obtain the estimated runoff at each scale. The estimated runoff at the original scale can be obtained by wavelet reconstruction. The efficacy of the proposed method is evaluated in two case studies of the Feng-Hua Bridge and Wu-Tu watershed. The analytic results confirm that the proposed wavelet-based method slightly outperforms the conventional method of using data only at the original scale. The results also show that the runoff hydrograph estimated by using the proposed method is smoother than that obtained using a single scale.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3