Tributary Loadings and Their Impacts on Water Quality of Lake Xingyun, a Plateau Lake in Southwest China

Author:

Luo LiancongORCID,Zhang HucaiORCID,Luo Chunliang,McBridge Chrisopher,Muraoka Kohji,Zhou HongORCID,Hou Changding,Liu Fenglong,Li Huiyun

Abstract

Lake Xingyun is a hypertrophic shallow lake on the Yunnan Plateau of China. Its water quality (WQ) has degraded severely during the past three decades with catchment development. To better understand the external nutrient loading impacts on WQ, we measured nutrient concentrations in the main tributaries during January 2010–April 2018 and modelled the monthly volume of all the tributaries for the same period. The results show annual inputs of total nitrogen (TN) had higher variability than total phosphorus (TP). The multi-year average load was 183.8 t/year for TN and 23.3 t/year for TP during 2010–2017. The average TN and TP loads for 2010–2017 were 36.6% higher and 63.8% lower, respectively, compared with observations in 1999. The seasonal patterns of TN and TP external loading showed some similarity, with the highest loading during the wet season and the lowest during the dry season. Loads in spring, summer, autumn, winter, and the wet season (May–October) accounted for 14.2%, 48.8%, 30.3%, 6.7%, and 84.9% of the annual TN load and 14.1%, 49.8%, 28.1%, 8%, and 84.0% of the annual TP load during 2010–2017. In-lake TN and TP concentrations followed a pattern similar to the external loading. The poor correlation between in-lake nutrient concentrations and tributary nutrient inputs at monthly and annual time scales suggests both external loading and internal loading were contributing to the lake eutrophication. Although effective lake restoration will require reducing nutrient losses from catchment agriculture, there may be a need to address a reduction of internal loads through sediment dredging or capping, geochemical engineering, or other effective measures. In addition, the method of producing monthly tributary inflows based on rainfall data in this paper might be useful for estimating runoff at other lakes.

Funder

Yunnan University

Yunnan Provincial Department of Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3