A one-dimensional semi-implicit finite volume modeling of non-inertia wave through rockfill dams

Author:

Sarkhosh Payam1,Salama Amgad1,Jin Yee-Chung1

Affiliation:

1. Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada

Abstract

Abstract For hydraulic routing through coarse rockfill dams, there is still debate on whether the inertia terms might be neglected as a result of the drag force generated by the rock materials. In this study, a one-dimensional unsteady model for flow-through rockfill dams is built. For this purpose, inertia terms of Saint–Venant equations are disregarded. A semi-implicit scheme adopted for linearizing the nonlinear friction term within the time integration satisfies the Courant–Friedrich–Lewy stability criterion. The most challenging issue in the modeling of flows through rockfill dams is the appropriate definition of boundary conditions at the dam's exit zone. In addition to the analysis of different exit boundary conditions proposed in the literature, a Neumann-type boundary condition suitable for the non-inertia wave equation is also employed to estimate the exit boundary condition. This procedure is basically in appreciation of the nonlinear behavior of the water surface closer to the exit boundary. Due to the existence of the sloping edges in the trapezoidal-shaped dam, an effective length is considered for the solution domain. Finally, the model is compared with observed data and a dynamic wave model. A very good match is observed, which builds confidence in the presented modeling approach.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3