Automating drainage direction and physiographic inputs to the CEQUEAU hydrological model: sensitivity testing on the lower Saint John River watershed, Canada

Author:

Dugdale Stephen J.1,St-Hilaire André12,Allen Curry R.1

Affiliation:

1. Canadian Rivers Institute, Department of Biology & Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada

2. Institut National de la Recherche Scientfique, Centre Eau Terre Environnement, Québec, Québec, Canada

Abstract

CEQUEAU is a process-based hydrological model capable of simulating river flows and temperatures. Despite an active user base, no facility yet exists for the automatic assembly and input of watershed data required for flow simulations. CEQUEAU can therefore be time-consuming to implement, particularly on large (≥104 km2) watersheds. We detail a new MATLAB toolbox designed to remove this key limitation by automatically computing CEQUEAU's key drainage direction and physiographic inputs from geographic information system (GIS) data. With the toolbox, model implementation can now be achieved extremely quickly (<1.5 hr) given suitable inputs. This time saving enabled us to assess CEQUEAU's sensitivity to changes in grid size by implementing the model on a large (14,990 km2) watershed at successively decreasing resolution (2.5 km to 112 km), using a fixed calibration parameter set. Results of this analysis showed that despite some model strength fluctuations linked to variability in computed basin size/land-use, only a minor decrease in model strength (mean Nash–Sutcliffe efficiency (NSE) reduction = 0.03) was observed at relatively fine resolutions (2.5 km to 20 km). Although results might change if the model was recalibrated at each resolution step, findings indicate that CEQUEAU is able to provide realistic flow simulations at a wide range of resolutions.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3