Combining Landsat TIR‐imagery data and ERA5 reanalysis information with different calibration strategies to improve simulations of streamflow and river temperature in the Canadian Subarctic

Author:

Rincón Eisinhower1ORCID,St‐hilaire André12ORCID,Bergeron Normand E.1ORCID,Dugdale Stephen J.3ORCID

Affiliation:

1. Centre Eau Terre Environnement Institut National de la Recherche Scientifique (INRS) Québec Québec Canada

2. Canadian Rivers Institute Fredericton New Brunswick Canada

3. School of Geography University of Nottingham Nottingham UK

Abstract

AbstractArctic and Subarctic environments are among the most vulnerable regions to climate change. Increases in liquid precipitation and changes in snowmelt onset are cited as the main drivers of change in streamflow and water temperature patterns in some of the largest rivers of the Canadian Arctic. However, in spite of this evidence, there is still a lack of research on water temperature, particularly in the eastern Canadian Arctic. In this paper, we use the CEQUEAU hydrological‐water temperature model to derive consistent long‐term daily flow and stream temperature time series in Aux Mélèzes River, a non‐regulated basin (41 297 km2) in the eastern Canadian subarctic. The model was forced using reanalysis data from the fifth‐generation ECMWF atmospheric reanalyses (ERA5) from 1979 to 2020. We used water temperature derived from thermal infrared (TIR) images as reference data to calibrate CEQUEAU's water temperature model, with calibration performed using single‐site, multi‐site, and upscaling factors approaches. Our results indicate that the CEQUEAU model can simulate streamflow patterns in the river and shows excellent spatiotemporal performance with Kling‐Gupta Efficiency (KGE) metric >0.8. Using the best‐performing flow simulation as one of the inputs allowed us to produce synthetic daily water temperature time series throughout the basin, with the multi‐site calibration approach being the most accurate with root mean square errors (RMSE) <2.0°C. The validation of the water temperature simulations with a three‐year in situ data logger dataset yielded an RMSE = 1.38°C for the summer temperatures, highlighting the robustness of the calibrated parameters and the chosen calibration strategy. This research demonstrates the reliability of TIR imagery and ERA5 as sources of model calibration data in data‐sparse environments and underlines the CEQUEAU model as an assessment tool, opening the door to its use to assess climate change impact on the arctic regions of Canada.

Funder

Government of Canada

Publisher

Wiley

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3