Improved methodology for processing raw LiDAR data to support urban flood modelling – accounting for elevated roads and bridges

Author:

Abdullah A. F.1,Vojinovic Z.1,Price R. K.1,Aziz N. A. A.2

Affiliation:

1. Department of Hydroinformatics and Knowledge Management, UNESCO-IHE, Westvest 7, NL-2611 AX Delft, The Netherlands

2. Dr. Nik & Associates Sdn. Bhd., No 22 and 24, Jalan Wangsa Delima 6, KLSC, Seksyen 5, Pusat Bandar Wangsa Maju, 53300 Kuala Lumpur, Malaysia

Abstract

Digital Terrain Models (DTMs) represent an essential source of information that can allow the behaviour of the urban floodplain, and its interactions with the drainage system, to be examined, understood and predicted. Typically, such data are obtained via Light Detection and Ranging (LiDAR). If a DTM does not contain adequate representation of urban features the results from the modelling efforts can be. This is due to the fact that urban environments contain variety of features, which can have functions of storing and/or diverting flows during flood events. The work described in this paper concerns further improvements of a LiDAR filtering algorithm which was discussed in a previous work. The key characteristics of this improved algorithm are: ability to deal with buildings, detect elevated road and represent them accordance to reality and deal with bridges and riverbanks. The algorithm was tested using a real-life data from a case study of Kuala Lumpur. The results have shown that the newly developed MPMA2 algorithm has better capabilities of identifying some of the features that are vital for urban flood modelling applications than any of the currently available algorithms and it leads to better agreement between simulated and observed flood depths and flood extents.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3