Investigating a new approach to enhance the discharge capacity of labyrinth weirs

Author:

Idrees Anees Kadhum1ORCID,Al-Ameri Riyadh2

Affiliation:

1. a Department of Environment Engineering, Faculty of Engineering, University of Babylon, Hillah-Najf Road, Babylon, Iraq

2. b School of Engineering, Faculty of Science Engineering & Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3220, Australia

Abstract

AbstractClimate change has caused the inefficient operation of a significant number of old weirs to pass large discharges. Therefore, this study aims to increase the discharge capacity of the labyrinth weir. A new approach was proposed by modifying a labyrinth weir structure. The data was obtained from the quarter-round crest and different sidewall angles ranging from 8 to 35°. A conventional labyrinth weir was used for comparison. The results showed that the percentage of the notches area to sidewalls area of the weir (An/Aw) does not exceed 8%. Also, the percentage of the notches' length to total crest length (ΔL/Lc) does not exceed 32%. Also, the percentage of the notch depth to the sidewall depth (ΔP/P) does not exceed 30%. The other parameters are kept constant. These dimensionless terms provided a maximum compound coefficient of discharge of 0.74. Also, the compound discharge coefficient initially increased at low water head ratios and decreased at higher values of water head ratios. The regression empirical equations were generated. The maximum increase in efficiency was 10% for a sidewall angle of 6° when compared to conventional labyrinth weirs. The maximum improvement of the compound coefficient of discharge was 18.8% for a sidewall angle of 8°.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3