Prediction of the discharge capacity of piano key weirs using artificial neural networks

Author:

Iqbal Mujahid1,Ghani Usman1

Affiliation:

1. 1 Department of Civil Engineering, University of Engineering and Technology, Taxila, Pakistan

Abstract

ABSTRACT The discharge capacity of the piano key weir (PKW) is an important flow feature which ultimately decides the design of PKWs. In the present research work, the different architecture of artificial neural networks (ANNs) was employed to predict the discharge capacity of the trapezoidal piano key weir (TPKW) by varying geometric parameters. Furthermore, adaptive neuro-fuzzy interference system (ANFIS), support vector machines (SVMs) and non-linear regression (RM) techniques were also applied to compare the performance of best ANN models. The performance of each model was evaluated using statistical indices including scatter-index (SI); coefficient of determination (R2) and mean square error (MSE). The prediction capability of all the models was found to be satisfactory. However, results predicted by ANN-22(H-15) [R2 = 0.998, MSE= 0.0024, SI = 0.0177] were more accurate than ANFIS (R2 = 0.995, MSE = 0.00039, SI=0.0256), SVM (R2 = 0.982, MSE = 0.000864, SI =0.0395) and RM (R2 = 0.978, MSE = 0.001, SI = 0.0411). It was observed that Si/So, Wi/Wo and L/W ratios have the greatest effect on the discharge performance of TPKW. Furthermore, sensitivity analysis confirmed that h/P is the most influencing ratio which may considerably affect the discharge efficiency of the TPKW and ANN architecture having a single hidden layer and keeping neurons three times of input parameters in hidden layers generated better results.

Publisher

IWA Publishing

Reference50 articles.

1. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT

2. Application of Gaussian Process Regression Model to Predict Discharge Coefficient of Gated Piano Key Weir

3. Bashiri H., Dewals B., Pirotton M., Archambeau P. & Erpicum S. 2016 Towards A New Design Equation for Piano Key Weirs Discharge Capacity. Available at: https://www.researchgate.net/publication/305355963_Towards_a_New_Design_Equation_for_Piano_Key_Weirs_Discharge_Capacity

4. Effect of the shape and type of piano key weirs on the flow efficiency

5. Hydrological modelling using artificial neural networks

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3