Affiliation:
1. 1 Department of Civil Engineering, University of Engineering and Technology, Taxila, Pakistan
Abstract
ABSTRACT
The discharge capacity of the piano key weir (PKW) is an important flow feature which ultimately decides the design of PKWs. In the present research work, the different architecture of artificial neural networks (ANNs) was employed to predict the discharge capacity of the trapezoidal piano key weir (TPKW) by varying geometric parameters. Furthermore, adaptive neuro-fuzzy interference system (ANFIS), support vector machines (SVMs) and non-linear regression (RM) techniques were also applied to compare the performance of best ANN models. The performance of each model was evaluated using statistical indices including scatter-index (SI); coefficient of determination (R2) and mean square error (MSE). The prediction capability of all the models was found to be satisfactory. However, results predicted by ANN-22(H-15) [R2 = 0.998, MSE= 0.0024, SI = 0.0177] were more accurate than ANFIS (R2 = 0.995, MSE = 0.00039, SI=0.0256), SVM (R2 = 0.982, MSE = 0.000864, SI =0.0395) and RM (R2 = 0.978, MSE = 0.001, SI = 0.0411). It was observed that Si/So, Wi/Wo and L/W ratios have the greatest effect on the discharge performance of TPKW. Furthermore, sensitivity analysis confirmed that h/P is the most influencing ratio which may considerably affect the discharge efficiency of the TPKW and ANN architecture having a single hidden layer and keeping neurons three times of input parameters in hidden layers generated better results.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献