Affiliation:
1. School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
2. Grand Water Research Institute, Technion – Israel Institute of Technology, Technion CityHaifa, 3200, Israel
Abstract
This paper presents a new approach for the real-time, near-optimal control of water-distribution networks, which forms an integral part of the POWADIMA research project. The process is based on the combined use of an artificial neural network for predicting the consequences of different control settings and a genetic algorithm for selecting the best combination. By this means, it is possible to find the optimal, or at least near-optimal, pump and valve settings for the present time-step as well as those up to a selected operating horizon, taking account of the short-term demand fluctuations, the electricity tariff structure and operational constraints such as minimum delivery pressures, etc. Thereafter, the near-optimal control settings for the present time-step are implemented. Having grounded any discrepancies between the previously predicted and measured storage levels at the next update of the monitoring facilities, the whole process is repeated on a rolling basis and a new operating strategy is computed. Contingency measures for dealing with pump failures, pipe bursts, etc., have also been included. The novelty of this approach is illustrated by the application to a small, hypothetical network. Its relevance to real networks is discussed in the subsequent papers on case studies.
Subject
Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献