Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network

Author:

Wei Shouke1,Zuo Depeng2,Song Jinxi3

Affiliation:

1. Department System Analysis, Integrated Assessment and Modelling, The Swiss Federal Institute of Aquatic Science and Technology (EAWAG), 8600 Dübendorf, Switzerland and Apmosian SciTech International Inc., BC V5P 3R1, Vancouver, Canada

2. College of Water Sciences, Beijing Normal University, 100875 Beijing, China

3. College of Urban and Environmental Sciences, Northwest University, 710069 Xi'an, China

Abstract

This study developed a wavelet transformation and nonlinear autoregressive (NAR) artificial neural network (ANN) hybrid modeling approach to improve the prediction accuracy of river discharge time series. Daubechies 5 discrete wavelet was employed to decompose the time series data into subseries with low and high frequency, and these subseries were then used instead of the original data series as the input vectors for the designed NAR network (NARN) with the Bayesian regularization (BR) optimization algorithm. The proposed hybrid approach was applied to make multi-step-ahead predictions of monthly river discharge series in the Weihe River in China. The prediction results of this hybrid model were compared with those of signal NARNs and the traditional Wavelet-Artificial Neural Network hybrid approach (WNN). The comparison results revealed that the proposed hybrid model could significantly increase the prediction accuracy and prediction period of the river discharge time series in the current case study.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3