Huizhou resident population, Guangdong resident population and elderly population forecast based on the NAR neural network Markov model

Author:

Li Dewang1,Qiu Meilan1,Luo Zhongliang2

Affiliation:

1. School of Mathematics and Statistics, Huizhou University, Huizhou 516007, China

2. School of Electronic and Information Engineering, Huizhou University, Huizhou 516007, China

Abstract

<abstract> <p>We propose a nonlinear auto regressive neural network Markov model (NARMKM) to predict the annual Huizhou resident population, Guangdong resident population and elderly population in China, and improve the accuracy of population forecasting. The new model is built upon the traditional neural network model and utilized matrix perturbation theory to study the natural and response characteristics of a system when the structural parameters change slightly. The delay order and hidden layer number of neurons has a greater effect the prediction result of NAR neural network model. Therefore, we make full use of prior information to constrain and test when making predictions. We choose reasonable parameter settings to obtain more reliable prediction results. Three experiments are conducted to validate the high prediction accuracy of the NARMKM model, with mean absolute percentage error (MAPE), root mean square error (RMSE), <italic>STD</italic> and <italic>R</italic><sup>2</sup>. These results demonstrate the superior fitting performance of the NARMKM model when compared to other six competitive models, including GM (1, 1), ARIMA, Multiple regression, FGM (1, 1), FANGBM and NAR. Our study provides a scientific basis and technical references for further research in the finance as well as population fields.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3