Efficient implementation of inverse approach for forecasting hydrological time series using micro GA

Author:

Liong S. Y.1,Phoon K. K.1,Pasha M. F. K.1,Doan C. D.1

Affiliation:

1. Department of Civil Engineering, Blk E1A, #07-03, 1 Engineering Drive 2, National University of Singapore, Singapore, 117576

Abstract

This paper implements the inverse approach for forecasting hydrological time series in an efficient way using a micro-GA (mGA) search engine. The inverse approach is based on chaos theory and it involves: (1) calibrating the delay time ((), embedding dimension (m) and number of nearest neighbors (k) simultaneously using a single definite criterion, namely optimum prediction accuracy, (2) verifying that the optimal parameters have wider applicability outside the scope of calibration, and (3) demonstrating that chaotic behaviour is present when optimal parameters are used in conjunction with existing system characterization tools. The first stage is conducted efficiently by coupling the Nonlinear Prediction (NLP) method with mGA using a lookup facility to eliminate costly duplicate NLP evaluations. The mGA-NLP algorithm is applied to a theoretical chaotic time series (Mackey–Glass) and a real hydrological time series (Mississippi river flow at Vicksburg) to examine its efficiency. Results show that: (1) mGA is capable of producing comparable or superior triplets using only up to 5% of the computational effort of all possible points in the search space, (2) the lookup facility is very cost-effective because only about 50% of the triplets generated by mGA are distinct, (3) mGA seems to produce more robust solutions in the sense that the record length required to achieve a stable optimum triplet is much shorter, and (4) the prediction accuracy is not sensitive to the parameter k. It is sufficient to use k = 10 in future studies. In this way, the 3D search space could be reduced to a much smaller 2D search space of m and τ.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3