A simple clustering technique to extract subsets of data for function approximation

Author:

Karunasingha Dulakshi Santhusitha Kumari1,Liong Shie-Yui2

Affiliation:

1. Department of Engineering Mathematics, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka

2. Tropical Marine Science Institute, National University of Singapore, Singapore 119223, Singapore

Abstract

A simple clustering method is proposed for extracting representative subsets from lengthy data sets. The main purpose of the extracted subset of data is to use it to build prediction models (of the form of approximating functional relationships) instead of using the entire large data set. Such smaller subsets of data are often required in exploratory analysis stages of studies that involve resource consuming investigations. A few recent studies have used a subtractive clustering method (SCM) for such data extraction, in the absence of clustering methods for function approximation. SCM, however, requires several parameters to be specified. This study proposes a clustering method, which requires only a single parameter to be specified, yet it is shown to be as effective as the SCM. A method to find suitable values for the parameter is also proposed. Due to having only a single parameter, using the proposed clustering method is shown to be orders of magnitudes more efficient than using SCM. The effectiveness of the proposed method is demonstrated on phase space prediction of three univariate time series and prediction of two multivariate data sets. Some drawbacks of SCM when applied for data extraction are identified, and the proposed method is shown to be a solution for them.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference38 articles.

1. Analysis of Observed Chaotic Data

2. Optimized fixed-size kernel models for large data sets;Brabanter;Computational Statistics & Data Analysis,2010

3. Fuzzy model identification based on cluster estimation;Chiu;Journal of Intelligent and Fuzzy Systems,1994

4. Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm;Doan;Journal of Hydroinformatics,2005

5. Multivariate adaptive regression splines;Friedman;Annals of Statistics,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3