On the prediction of underground water pipe failures: zero inflation and pipe-specific effects

Author:

Economou Theodoros1,Kapelan Zoran1,Bailey Trevor C.1

Affiliation:

1. College of Engineering, Mathematics and Physical Sciences, North Park Road, Exeter EX4 4QF, UK

Abstract

The prediction of pipe failures in water distribution systems is an essential planning tool for water companies. Previous methods focus on the prediction of either future failure numbers or aspects of pipe condition. However, most of these only predict at the level of large pipe groups (of similar characteristics) and often cannot provide uncertainty bounds. Here, a new statistical method is developed to predict the probability of failure at the single pipe level. The method extends the Non-Homogeneous Poisson Process (NHPP) in two ways: firstly, it incorporates pipe-specific random effects to account for unmeasured information on the factors affecting the pipe failures. Secondly, the method explicitly accounts for zero inflation, that is the possibility that more zero failures occur than expected from a simple Poisson assumption. This zero-inflated NHPP (ZINHPP) model was applied to two real-life datasets, one from North America and one from New Zealand. The results clearly demonstrate improved prediction capability, especially in the New Zealand data, which contain a much larger percentage of pipes with zero failures.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3