Models and explanatory variables in modelling failure for drinking water pipes to support asset management: a mixed literature review

Author:

Forero-Ortiz EdwarORCID,Martinez-Gomariz EduardoORCID,Sanchez-Juny MartiORCID,Cardus Gonzalez JaumeORCID,Cucchietti FernandoORCID,Baque Viader Ferran,Sarrias Monton MiquelORCID

Abstract

AbstractThere is an increasing demand to enhance infrastructure asset management within the drinking water sector. A key factor for achieving this is improving the accuracy of pipe failure prediction models. Machine learning-based models have emerged as a powerful tool in enhancing the predictive capabilities of water distribution network models. Extensive research has been conducted to explore the role of explanatory variables in optimizing model outputs. However, the underlying mechanisms of incorporating explanatory variable data into the models still need to be better understood. This review aims to expand our understanding of explanatory variables and their relationship with existing models through a comprehensive investigation of the explanatory variables employed in models over the past 15 years. The review underscores the importance of obtaining a substantial and reliable dataset directly from Water Utilities databases. Only with a sizeable dataset containing high-quality data can we better understand how all the variables interact, a crucial prerequisite before assessing the performance of pipe failure rate prediction models.

Funder

Agència de Gestió d'Ajuts Universitaris i de Recerca

Aigües de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3