Use of an artificial neural network to capture the domain knowledge of a conventional hydraulic simulation model

Author:

Rao Zhengfu1,Alvarruiz Fernando2

Affiliation:

1. School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK

2. Departamento de Sistemas Informáticos y Computación, Universidad Politecnica de Valencia, Valencia, 46022, Spain

Abstract

As part of the POWADIMA research project, this paper describes the technique used to predict the consequences of different control settings on the performance of the water-distribution network, in the context of real-time, near-optimal control. Since the use of a complex hydraulic simulation model is somewhat impractical for real-time operations as a result of the computational burden it imposes, the approach adopted has been to capture its domain knowledge in a far more efficient form by means of an artificial neural network (ANN). The way this is achieved is to run the hydraulic simulation model off-line, with a large number of different combinations of initial tank-storage levels, demands, pump and valve settings, to predict future tank-storage water levels, hydrostatic pressures and flow rates at critical points throughout the network. These input/output data sets are used to train an ANN, which is then verified using testing sets. Thereafter, the ANN is employed in preference to the hydraulic simulation model within the optimization process. For experimental purposes, this technique was initially applied to a small, hypothetical water-distribution network, using EPANET as the hydraulic simulation package. The application to two real networks is described in subsequent papers of this series.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3