Reduction of Multi‐Port Water Distribution Networks Using the Generalized Thevenin Theorem

Author:

Balireddy Raman1,Chakravorty Anjan1,Bhallamudi S. Murty2,Kuiry S. Nath2ORCID

Affiliation:

1. Department of Electrical Engineering Indian Institute of Technology Madras Chennai India

2. Department of Civil Engineering Indian Institute of Technology Madras Chennai India

Abstract

AbstractExpansion and reorganization of water distribution networks by connecting sub‐networks via single or multiple pipes are common practices in developing cities to serve newly developed areas. In that context, the existing large network is often replaced with its equivalent simplified network for the optimal design of the upcoming sub‐networks to avoid the computational burden. The reservoir‐pump model is frequently used by practicing hydraulic engineers to replace an existing one; however, such a model should be applied only when the networks are connected through a single pipe. In this study, a new network reduction methodology is developed for multi‐port connections utilizing the analogy between electrical circuits and hydraulic networks. The equivalent simple network is obtained by suitably applying the generalized Thevenin theorem for electrical circuits. The number of network elements in the equivalent network is significantly reduced compared to the ones obtained by the existing water distribution network (WDN) reduction methods. Therefore, it is possible to reorganize and expand a large existing network system from a prior knowledge of its most sensitive parts. The accuracy and robustness of the proposed methodology are investigated on realistic WDNs by comparing the results with EPANET, for both Demand Driven Analysis and Pressure Driven Analysis. However, as of now, an electrical simulator is required to implement the proposed methodology due to the absence of current dependent voltage source model in hydraulic simulators. The proposed network reduction method can be of enormous utility for hydraulic engineers and opens up an opportunity to implement new elements in hydraulic simulators.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3