Extended Fenton's process: toward improving biodegradability of drilling wastewater

Author:

Ding Ran12,Wang Yanming1,Chen Xing13,Gao Yingxin12,Yang Min12

Affiliation:

1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

2. University of Chinese Academy of Sciences, Beijing, 100049, China

3. Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, China

Abstract

Abstract In this study, an extended Fenton process was used to improve biodegradability of the waste drilling mud containing bio-refractory polymers. Variation of biodegradability and organics with different molecular weights with the oxidation time were investigated during the Fenton oxidation process. Although the residual total organic carbon (TOC) arrived at a stable level soon after oxidation reaction, organics with the lower molecular weight increased and its biodegradability was improved significantly in the extended oxidation process, which originated from decomposition of residual H2O2 catalyzed by transformation of the Fe3+/Fe2+ and organoradicals. Under the conditions that follow: pH 3.0, H2O2 500 mg L−1, Fe2+ 250 mg L−1, oxidation time 120 min, further TOC removal of 35.9% and biochemical oxygen demand and total organic carbon (BOD/TOC) ratio of 0.83 was achieved. At the biological test, a substantial increase in TOC degradation by biological treatment with extension of Fenton oxidation time was observed. Finally, more than 90% biological removal of the TOC was achieved for the 120 min oxidation treatment. The experimental results highlight that an extended process can be adopted to improve the biodegradability of wastewater by utilization of the slow reaction of hydrogen peroxide with Fe3+ and organoradicals.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3