Affiliation:
1. Southwest Petroleum University, 8 Xindu Ave., Xindu District, Chengdu, Sichuan, China
Abstract
Abstract
Advanced oxidation technology is considered to be the most potential wastewater treatment technology. As one of the advanced oxidation technologies, the three-dimensional electrochemical system (3DES) is often used to treat industrial wastewater that is difficult to degrade. Sulphonated phenolic resin (SMP) was treated as a characteristic pollutant in sulfonated drilling wastewater. The separate effect of current, the dosage of particle electrodes, chloride ion concentration and initial pH on chlorinated by-products were analyzed by response surface methodology (RSM). Results showed that current is the most dominant factor, followed by the dosage of particle electrodes. The ultraviolet-electrolysis (UVEL) system was implemented by adding ultraviolet light under the optimal electrolysis (EL) system. The chemical oxygen demand (CODcr) and total organic carbon (TOC) removal rates of the UVEL system were respectively increased by 19% and 29.39% compared with the EL system, the concentration of chlorinated by-products was also reduced by 534.4 mg/L when the UV irradiance was 5.24 mW/cm2. These results indicated that the UVEL system degrades SMP more thoroughly. The enhanced reaction mechanism of the UVEL system and the possible degradation pathway for SMP were proposed by controlling free radical quenching experiments and the product of EL and UVEL processes. The results showed that the high degradation efficiency of the UVEL system could be attributed to the synergistic degradation mechanism present in the UVEL system, where the photolysis of active chlorine species (ACl) promotes the increase of hydroxyl radical (·OH).
Funder
this work was supported by the major national r&d projects of china
Subject
Water Science and Technology,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献