Decolorizing Dye Wastewater with Low Temperature Catalytic Oxidation

Author:

Pak Daewon,Chang Wonseok

Abstract

Novel oxidation technology to decolorize dye wastewater was discussed and the feasibility of color removal with Fe/MgO catalyst fluidizing in a reactor under continuous flow was demonstrated at room temperature. In batch tests, the oxidation reaction of reactive and disperse dye with an oxidizing agent, hydrogen peroxide, in the presence of Fe/MgO catalyst was performed. Through the catalytic oxidation, dyes were oxidized to molecules with lower molecular weight and then mineralized based on TOC analysis. The influence of hydrogen peroxide and catalyst dosage on the catalytic oxidation rate was verified. The catalytic oxidation rate increased with increasing hydrogen peroxide and catalyst dosage. Fe/MgO catalyst fluidizing in the reactor operated at room temperature was tested to decolorize the wastewater from a dye manufacturing industry. In the fluidized bed reactor, the wastewater was completely decolorized and about 30% of COD removal was obtained during 30 days of operation. Organic matters were degraded and part of them mineralized by the catalytic oxidation. BOD/COD ratio of the effluent from the fluidized bed reactor was increased compared to that of the influent. After 30 days of operation, the effluent from the fluidized bed reactor started becoming yellowish. COD and residual hydrogen peroxide concentration in the effluent started to increase due to the catalyst losing its activity.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3