Intercomparing the robustness of machine learning models in simulation and forecasting of streamflow

Author:

Loganathan Parthiban1,Mahindrakar Amit Baburao1

Affiliation:

1. School of Civil Engineering, VIT University, Vellore, Tamilnadu 632014, India

Abstract

Abstract The intercomparison of streamflow simulation and the prediction of discharge using various renowned machine learning techniques were performed. The daily streamflow discharge model was developed for 35 observation stations located in a large-scale river basin named Cauvery. Various hydrological indices were calculated for observed and predicted discharges for comparing and evaluating the replicability of local hydrological conditions. The model variance and bias observed from the proposed extreme gradient boosting decision tree model were less than 15%, which is compared with other machine learning techniques considered in this study. The model Nash–Sutcliffe efficiency and coefficient of determination values are above 0.7 for both the training and testing phases which demonstrate the effectiveness of model performance. The comparison of monthly observed and model-predicted discharges during the validation period illustrates the model's ability in representing the peaks and fall in high-, medium-, and low-flow zones. The assessment and comparison of hydrological indices between observed and predicted discharges illustrate the model's ability in representing the baseflow, high-spell, and low-spell statistics. Simulating streamflow and predicting discharge are essential for water resource planning and management, especially in large-scale river basins. The proposed machine learning technique demonstrates significant improvement in model efficiency by dropping variance and bias which, in turn, improves the replicability of local-scale hydrology.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3